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RESEARCH MEMORANDUM 

THE ORIGIN AND DISTRIBUTION OF SWEBSONIC STOW 

INTERFERENCE FROM MEASUREMENT OF INDIVIDUAL FORCES ON 

SEVERAL WING-FUSELAGE-STORE CONFIGURATIONS 

1 V . -  DELTA-WING HEAVY-BOMBER CONFIGURATION 

W I T H  LARGE STOm. MACH NUMBER, 1.61 

By Ode11 A. Morris 

~ SUMMARY 

A supersonic wind-tunnel investigation of the' or igin and d is t r ibu t ion  
of s tore  interference has been performed i n  the Langley 4- by 4-foot 
supersonic pressure tunnel a t  a Mach number of 1.6 i n  which separate forces 
on a s tore  and on a 60° delta-wing-fuselage combination were measured. 
The s tore  was separately mounted on i t s  own five-component internal balance 
and w a s  traversed through a wide range of spanwise, chordwise, and ve r t i ca l  
posit ions.  The configuration presented i n  this report  simulates a heavy- 
bomber delta-wing airplane and has a large external symmetrical s to re  t h a t  
represents a nacelle having a f ronta l  area equivalent t o  a twin-engine 
nacelle. 

I n  general, the r e su l t s  ind ica ted tha t  the interference e f fec ts  
measured f o r  the 6oo delta-wing-fuselage combination w e r e  similar i n  
character and magnitude t o  those previously reported f o r  a 45' swept- 
wing-fuselage combination tes ted i n  the presence of the same s tore .  
However, the variation of the interference values of l i f t  and drag with 
s tore  chordwise posit ion produced on the s tore  by the 60° delta-wing- 
fuselage combination w a s  somewhat smaller than the variation shown f o r  
the 4 5 O  swept-wing-fuselage combination. Also, the interference drag 
on the s tore  produced by the presewe of the w i n g  and fuselage is  explained 
i n  a qual i ta t ive way by using the "buoyancy" method which considers the 
pressure f i e l d  of the wing and fuselage and the resul tant  buoyant forces 
on the s tore .  

. 
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INTRODUCTION 

A t  transonic and supersonic speeds, research on external s tores  and 
nacelles has shown that interference between the various components may 
incur large performance penalties (ref.  1). However, very l i t t l e  force 
breakdown data have been obtained from which the problem of s to re  i n t e r -  
ferences might be understood. 
detailed experimental investigation of s to re  interference has been under- 
taken i n  the Langley 4- by 4-foot supersonic pressure tunnel. 
describes i n  d e t a i l  the investigation and presents the first phase of the 
program which includes s tore  t e s t s  made i n  the presence of a 45' swept 
wing. 

In  order t o  furnish such information, a 

Reference 2 

The r e su l t s  of s to re  tests i n  the presence of a 60° delta-wing- 
fuselage combination a t  a Mach number of 1 .6  a re  presented herein and 
include the aerodynamic charac te r i s t ics  of the semispan model (four com- 
ponents) and the individual forces and moment ( f ive  components) on the 
s tore .  The semispan wing-fuselage model and s to re  simulate a delta-wing 
heavy-bomber configuration with a large external s to re  (a body of revo- 
lut ion having an equivalent f ron ta l  area of a twin-engine nacelle with 
no provision f o r  in te rna l  f low).  As  i n  reference 2, the data are pre- 
sented with a somewhat limited analysis i n  order t o  expedite publication. 

SYMBOLS 

C D W f  

CLwf 

"trf C 

C 
2wf 

cDS 

C 
DBS 

Drag drag coefficient of wing-fuselage combination, - 
qs 

L i f t  - 
qs 

l i f t  coefficient of wing-fuselage combination, 

pitching-moment coefficient of wing-fuselage combination 
Pitching moment about 0.623c, qsc 

wing bending moment of wing-fuselage combination, 
Bending moment 

9s: b 

Drag drag coefficient of s tore ,  - 
9F 

base drag coefficient of s tore ,  
'BS 
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L i f t  l i f t  coefficient of s tore ,  - 
SF 

pitching-moment coefficient of s tore  about s tore  nose or 
Pitching moment 

SF 1 
s tore  midpoint as indicated, 

side-force coefficient of s tore ,  side force 
QF 

yawing-moment coefficient of s tore  about s to re  nose o r  
Y a w i n g  moment 

SF z 
s tore  midpoint as indicated, 

t o t a l  l i f t  coefficient of complete configuration (wing and 

fuselage plus s to re )  based on wing area, 

t o t a l  drag coefficient of complete configuration (wing and 
fuselage plus s to re )  based on wing area, 

slope of variation of s to re  l i f t  coefficient with w i n g -  
fuselage angle of attack 

slope of variation of s to re  side-force coef f ic ien t  with 
wing-fuselage angle of attack 

pressure coefficient on s tore  base 

mean aerodynamic chord of wing, i n .  

angle of attack measured with respect t o  f r e e  airstream, deg 

t o t a l  area of wing semispan, 0.543 sq f t  

m a x i m u m  f ron ta l  area of s tore ,  0.0123 sq f t  

area of s tore  base, 0.005 sq f t  

dynamic pressure, lb/sq f t  

wing semispan, 9.5 i n .  

s to re  length, 12 i n .  

chordwise posit ion of s tore  midpoint, measured from nose of 
fuselage (see f i g .  1), i n .  
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Y spanwise posit ion of s tore  center l i ne ,  measured from 

fuselage center l i ne ,  i n .  

Z vert ical  posit ion of s tore  center l i ne ,  measured from wing 
chord plane , i n .  

P 

M Mach number 

cotangent of Mach angle, , / r l  

Subscripts : 

f fuselage 

W wing 

S s tore  

APPARATUS AND TESTS 

Models and Equipment 

The principal dimensions of the models and the general arrangement 
of the t e s t  setup are  shown i n  figure 1. A l i s t  of the pertinent model 
dimensions is  given i n  table I.  The semispan wing-fuselage combination 
w a s  designed t o  simulate a delta-wing heavy bomber-type airplane.  The 
600 delta wing and fuselage were constructed of metal and were mounted 
on a boundary-layer bypass plate  10- 3 inches from the tunnel w a l l .  

4 
The fuselage and s tore  are  the same used i n  previous s tore  t e s t s  

and are described i n  de t a i l  i n  reference 2 together with a description 
of the test  equipment, methods, and remarks on support interference. 
The delta-wing-fuselage model angle of attack w a s  varied from 0' t o  4' 
with the s tore  angle of attack remaining constant a t  0'. Tests were 
made with the s tore  i n  the presence of the wing-fuselage model a t  various 
spanwise and chordwise positions and fo r  ver t ica l  heights z of 
1.15 inches, 1.67 inches, and 2.09 inches as shown i n  figure 1. 
t e s t s  were run w i t h  boundary-layer t rans i t ion  fixed as described i n  re f -  
erence 2, and with no store-support pylons o r  model t a i l  surfaces. 

All 

The t e s t s  were performed i n  the 4- by 4-foot supersonic pressure 
tunnel a t  a Mach number of 1.61 and a corresponding Reynolds number per 

6 foot  of 4.20 x 10 . 



Accuracy of Data 
I 

An estimate of the re la t ive  accuracy of the present d a t a  as deter- 
mined from an inspection of repeat t e s t  points and s ta t ic-def lect ion 
calibrations i s  presented below: 

Store position: 
x, in .  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.025 
y, in .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  tO.05 
z, in .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  tO.05 

Store character is t ics :  
c D , .  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  k0.005 
C & . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  +_0.010 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  to.005 ms 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  +O.OlO 
YS 

I C % . .  kO.005 . . . . . . . . . . . . . . . . . . . . . . . . . . .  
us, deg . . . . . . . . . . . . . . . . . . . . . . . . . . .  t O . 2  

I 

Wing-fuselage : 
cQf . . . . . . . . . . . . . . . . . . . . . . . . . . . .  t0.0005 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  to.005 4Jf C 

cmwf . . . . . . . . . . . . . . . . . . . . . . . . . . . .  t0.002 

cz,f . . . . . . . . . . . . . . . . . . . . . . . . . . . .  to.002 

awf, deg . . . . . . . . . . . . . . . . . . . . . . . . . .  20.1 

RESULTS AND DISCUSSION 

Basic D a t a  

Isolated s tore  and wing-fuselage data.- The l i f t ,  drag, and pitching- 
moment coefficients f o r  the isolated store a t  angles of at tack up to loo 
were obtained from references 2 and 3 and are  presented i n  figure 2(a). 
Data are  shown fo r  tests made w i t h  the store pitched*both i n  the plane of 
the normal-force beam and i n  the plane of the side-force beam; f o r  as w a s  
pointed out i n  ref. 2, the s tore  was rolled as the values of ve r t i ca l  
height z were changed. The data thus obtained are shown t o  be within 
the stated accuracy of the t e s t s .  Also, the pitching-moment data are 
presented computed about the s tore  nose and about the s tore  midpoint; f o r  
the referenced interference data have been presented about both points. 



Figure 2(b) presents the l i f t ,  drag, and pitching moment f o r  the 
isolated fuselage and the i so la ted  wing-fuselage combination for  angles 
of attack up t o  4'. 

Chordwise p lo t s  of force coefficients.-  The basic data f o r  the 
s tore  i n  the presence of the wing-fuselage combination a re  presented i n  
figures 3 t o  8. 
s t a t i c  pressure a t  the base. 
basic data fo r  the wing-fuselage canbination i n  the presence of the s tore .  
The data are presented i n  the form of p lo t s  of coefficients against  a 
chordwise posit ion parameter x - By which i s  a function of the posit ion 
of the s tore  midpoint and the inc l ina t ion  of the free-stream Mach l i n e .  
A horizontal Mach l i n e  of fse t ,  which w a s  discussed i n  d e t a i l  i n  re fer -  
ence 2, permits the curves of the chordwise coefficient variation t o  be 
fa i red  as a "family," and thus results i n  a more systematic f a i r ing  
betveen t e s t  points. 
the 11 spanwise positions can be shown on a single f igure .  On the r i g h t  
and l e f t  margins, the zero f o r  each curve i s  ident i f ied  w i t h  the l i n e  
symbol corresponding t o  the spanwise posi t ion.  The spanwise or  chordwise 
s tore  positions a t  which measurements were obtained are  ident i f ied  by the 
appropriate symbol i n  a sketch drawn t o  scale  on each f igure .  

A l l  s to re  drag data have been corrected f o r  free-stream 
Figures 9 t o  14 show the corresponding 

Offset ve r t i ca l  scales  a re  used so  t h a t  data f o r  

Contour Plots 

Contour plots  of the aerodynamic forces and,mments f o r  selected 
configurations have. been prepared from the basic data ( f ig s .  3 t o  14)  
and are presented i n  f igures  15 t o  25. For a l l  the contour p lo t s ,  the 
force or  moment coefficient involved i s  plot ted a t  the s tore  midpoint 
f o r  the various s to re  locations.  

Store drag.- Figure 15 shows the drag of the s tore  (coeff ic ient  
based on s tore  f ron ta l  area)  i n  the presence of the wing-fuselage combi- 
nation. The influence of the wing-fuselage combination on the drag of 
the s tore  i s  shown ( f i g .  l ? ( a ) )  t o  increase the drag of the s tore  about 
60 percent i n  the v ic in i ty  of the wing midchord inboard positions. 
the s tore  i s  moved rearward toward the wing t r a i l i n g  edge and outboard 
toward the wing t i p ,  the s to re  drag values decrease toward the isolated 
store values. Favorable interference reduces the s tore  drag behind the 
wing t r a i l i n g  edge. Figure l ? (b )  shows t h a t  increases i n  ve r t i ca l  d i s -  
placement between the s tore  and wing, i n  general, decrease the s to re  
drag f o r  a l l  s to re  positions i n  the region of the wing plan form. 
Increasing the wing-fuselage angle of a t tack  increases the s to re  drag 
near the wing t r a i l i n g  edge when z = 2.09 ( f i g .  l 5 ( c )  ) . 

When 

Store l i f t . -  Contour p lo t s  of the s tore  l i f t  i n  the presence of the 
wing fuselage a re  presented i n  f igure 16. I n  the v i c in i ty  of the wing 



plan form, the data show large increases i n  s tore  l i f t  ( f i g .  1 6 ( a ) ) ,  
par t icular ly  fo r  s tore  positions inboard on the span. The increase i n  
the s tore  l i f t  i s  probably caused by the negative pressure region 
beneath the wing plan form. The s tore  l i f t  forward and rearward of the 
wing plan form decreases and f o r  some store positions becomes negative. 

I n  general, increasing the displacement between the s tore  and wing 
shows small decreases i n  s tore  l i f t  ( f i g .  16(b) ) .  
a t tack on s tore  l i f t  indicate a small reduction i n  s tore  l i f t  inboard 
on the wing and an increase near the t i p  ( f ig .  1 6 ( ~ )  ) . 

Effects of angle of 

Store pitching moment.- Contour plots of the s tore  pitching moments 
i n  the presence of the wing and fuselage a re  presented i n  figure 17. 
Since the pitching moments fo r  t h i s  figure are calculated about the s tore  
nose, the pitching-moment values shown are largely a r e su l t  of l i f t  on 
the s tore  and, i n  general, show the same trends as previously described 
fo r  l i f t .  

Store side force.- The data of figure 18 show a contour p lo t  of the 
s tore  side force i n  the presence of the w i n g  and fuselage. The data of 
figure 18(a) show a posit ive (inward) side force f o r  a l l  s tore  positions 
on the wing plan form, except along the wing t r a i l i n g  edge. Increasing 
the ver t ica l  displacement between the store and wing shifts the region 
of negative side-force coefficients forward on the wing plan form some- 
what ( f ig .  18(b) )  but no major effects  of ver t ica l  displacement a re  noted. 

However, increasing the wing angle of attack ( f ig .  1 8 ( ~ ) )  causes 
large increases i n  s tore  side force which w i l l  be discussed i n  more 
de t a i l  i n  subsequent figures . 

Store yawing moment.- Contour plots  of the s tore  yawing-moment 
coefficients i n  the presence of the wing fuselage are  presented i n  f i g -  
ure 19. 
puted about the s tore  nose and are  largely a r e su l t  of side force.  

The yawing-moment coefficients for  t h i s  f igure a re  a l so  com- 

Wing-fuselage drag.- Contour plots  of the wing-fuselage drag i n  
the presence of the s tore  a re  presentedin figure 20 (coefficients based 
on wing a rea ) .  
approximately 0.0010 t o  0.0015 due to  store interference f o r  both s to re  
ver t ica l  heights ( f igs .  20(a) and ( b ) )  which i s  about a 13-percent drag 
increase over the isolated wing-fuselage drag (0.0115). Increasing the 
angle of attack t o  bo ( f ig .  20(c)) raises the drag leve l  due t o  angle-of- 
attack loading; however, the wing-fuselage drag due t o  s tore  interference 
was about the same fo r  s tore  positions forward of the wing plan form with 
small increases shown fo r  positions i n  the v ic in i ty  of the wing t r a i l i n g  
edge. 

The drag of the wing and fuselage shows an increase of 



Figure 21 shows the t o t a l  drag for  the complete configuration (wing 
and fuselage plus s to re ) .  
drag varied from about 0.017 t o  0.022 with the minimum values shown f o r  
store positions along the wing t r a i l i n g  edge and around the wing t i p  
( f ig .  21 (a ) ) .  
vicinity of the wing midchord inboard s ta t ions.  
the isolated s tore  and the isolated wing and fuselage is only  O.Ol72, a t  
a = 0' the maximum t o t a l  drag (0.022) corresponds t o  an increase of 
approximately 28 percent due t o  mutual interference. 

I n  the region of the wing plan form, the t o t a l  

Maximum t o t a l  drag i s  shown f o r  s tore  positions i n  the 
Since the t o t a l  drag f o r  

Increasing the ver t ica l  displacement between the s tore  and wing 
lowers the increase i n  t o t a l  drag f o r  s tore  positions i n  the region of 
the wing root ' ( f ig .  21(b)) .  
( f i g .  21(c))  a f fec ts  the t o t a l  drag i n  a manner similar to  the e f fec ts  
previously discussed fo r  wing-fuselage drag. 

Changing the angle of attack t o  4' 

Wing-fuselage l i f t . -  The l i f t  of the wing-fuselage combination i n  
the presence of the store i s  presented i n  figure 22. With the s tore  
near the wing surface ( f ig .  22 (a ) ) ,  a posit ive l i f t  interference occurs 
f o r  a l l  s tore  positions rearward of about the wing center (about 0 . 5 5 )  
with maximum values shown inboard along the wing t r a i l i ng  edge. For 
store positions near the forward portion of the wing, negative l i f t -  
interference values were obtained. Increasing the ver t ica l  displacement 
between the wing and s tore  tends t o  s h i f t  the negative l i f t - interference 
region forward somewhat ( f ig .  22(b)) ,  but the magnitudes of the l i f t  
values remain about the same. Changes i n  l i f t  interference due t o  angle 
of attack appear t o  be re la t ive ly  small ( f i g .  22(c) ) . 

Figure 23 shows the t o t a l  l i f t  of the complete configuration (wing 
and fuselage plus s to re ) .  
resul ts  previously shown fo r  the wing-fuselage l i f t ,  and thus indicate 
that  the e f fec ts  of s tore  l i f t  on t o t a l  l i f t  are re la t ive ly  small. 

These data show only small variations from the 

Wing-fuselage pitching moments.- The data of figure 24 present the 
contour plots of the wing-fuselage pitching moments i n  the presence of 
the store (datc computed about 0.6255). Figure 24(a) shows tha t  f o r  s tore  
positions i n  the proximity of the wing ( z  = 1.15) maximum positive 
pitching moments occur i n  the v ic in i ty  of the inboard midchord s ta t ions.  
For store positions along the wing t r a i l i n g  edge and forward of the wing 
leading edge, the pitching moments decrease t o  zero. Increasing the 
store ver t ica l  height ( f ig .  24(b))  decreases the magnitude of the pitching 
moments and s h i f t s  the region of maximum values forward somewhat. The 
pitching moments were increased approximately 0.026 due t o  4' angle-of - 
attack loading ( f ig .  24 (c ) ) ,  but the e f fec ts  of s tore  interference on the 
pitching moments remained about the same. 

Wing-root bending moments.- Contour plots  of the wing-root bending 
moments a re  shown i n  figure 25 (data computed about model center l i n e ) .  



The bending-moment contours ( f ig .  25(a))  are similar t o  the wing-fuselage 
l i f t  contours insofar as posit ive bending moments occur f o r  s tore  posi- 
t ions rearward of about the wing center and change t o  negative bending 
moments on the forward portion of the wing. Increasing the s tore  ve r t i -  
c a l  displacement ( f ig .  25(b)) tends t o  move the region of posit ive in t e r -  
ference forward on the w i n g ,  but the magnitudes of the bending moments 
show only small differences. The peak values of bending moments shown, 
about 0.024, correspond t o  that produced by approximately 1' angle of 
a t tack.  The contour p lo t  of f igure 25(c) shows that increasing the angle 
of attack t o  4' causes no appreciable changes i n  the incremental bending- 
moment values f o r  s tore  positions i n  the v ic in i ty  of the w i n g  plan form. 

Pressure Field Analysis 

As indicated i n  reference 2, there i s  a need f o r  more experimental 
and theoret ical  studies of the interferences of actual  airplane configu- 
ra t ions.  Therefore, it appears that a simple understanding of the 
sources and dis t r ibut ion of the interference e f f ec t s  of specif ic  configu- 
rations would be useful, par t icular ly  with regard t o  drag. Thus, the 
drag data have been analyzed accordingly by using the qual i ta t ive 
"buoyancy" method outlined i n  reference 2. 

Store drag i n  presence of wing fuselage.- The e f f ec t  of the wing- 
fuselage pressure f i e l d  on s tore  drag f o r  two spanwise s ta t ions may be 
seen i n  f igure 26. The only static-pressure measurements taken i n  the 
flow f i e l d  were a t  the base of the store.  The difference between base 
pressure of the s tore  i n  presence of the wing and fuselage and that of 
the isolated s tore  i s  indicative of the mutual interference e f fec ts  a t  the 
base. The incremental pressures obtained a t  the base of the s tore  w e r e  
found t o  vary approximately as the theoretical  flow f i e l d  pressures f o r  
i so la ted  delta w i n g s  i n  reference 4; so these incremental pressures w e r e  
used f o r  the present qual i ta t ive study of the s tore  interference e f fec ts .  
The variation of the s tore  plus interference drag can be shown by simply 
mapping this flow f i e l d  into posit ive and negative pressure-coefficient 
regions as  shown i n  figure 26. 
drag curve over or  below t h a t  of the isolated s tore  drag can be explained 
i n  a qual i ta t ive way by simple "buoyancy considerations." 
values of s tore  drag above the isolated s tore  values a re  a result of the 
presence of the s tore  afterbody i n  a region of negative pressure and the 
presence of the s tore  nose i n  a region of posit ive pressure with peak drag 
values resul t ing from a combination of these pressures on the s tore .  
values of drag below those f o r  the isolated s tore  can. similarly be 
explained by negative pressures on the store nose or posit ive pressures 
on the s tore  afterbody. 

The increase or  decrease i n  the s tore-  

That is, the 

The 

An attempt w a s  made t o  compute the s tore  drag by the buoyancy method 
of reference 2 using the pressure-field information of f igure 26. The 



.......... ....................... 
s tore  drag values calculated fo r  the spanwise s ta t ions of figure 26 
(y = 5.4 
drag, and therefore the values are  not shown. No extensive calculations 
were attempted because the pressure-field information was somewhat 
limited. Thus, it appears that a more complete survey of the flow f i e l d  
than was obtained i n  these t e s t s ,  preferably obtained by more exact 
methods of measurement, would be required t o  predict  the s tore  drag with 
any degree of accuracy. 

and y = 7.8) showed poor agreement with the measured s tore  

Drag of wing and fuselage i n  presence of store.-  The variation of 
the wing-fuselage drag with chordwise s tore  posit ion f o r  four spanwise 
s ta t ions i s  shown i n  figure 27. The posit ion of the loca l  wing section 
with respect t o  the s tore  and i t s  pressure f i e l d  ( r e f .  2 )  fo r  a number 
of points on the curve i s  shown i n  the sketches. A s  before, the drag 
of the wing and fuselage above or  below the isolated value i s  explained 
by the posit ion of the local  wing-chord section i n  the posit ive o r  
negative pressure f i e l d  of the s tore .  In  general, high drags are  a 
resu l t  of posit ive pressures over the forward portion of the w i n g  section, 
or negative pressures over the rearward portion of the wing section, or  a 
combination of both. Although only local  chordwise e f fec ts  are  i l l u s -  
trated,  the same observations can be made by mapping the flow f i e l d  over 
t ha t  par t  of the wing plan form affected by the s tore  pressure f i e l d .  

Thus, it i s  shown that the method used i n  reference 2 tQ explain the 
mutual interference drag of a swept wing and a s tore  i s  a lso applicable 
t o  the case of the delta-wing configuration. 

Effect of Store Vertical  Displacement and 

Wing-Fuselage Angle of Attack 

E f f e c t  of s tore  ver t ica l  displacement 2.- The ef fec ts  of ve r t i ca l  
displacement between the store and wing on the s tore  and wing forces and 
moments a re  summarized i n  figure 28 t o  37 f o r  four spanwise s ta t ions .  
The store moments fo r  these figures were calculated about the s tore  mid- 
point. As w a s  previously noted i n  the discussion of the contour plots ,  
figures 28 t o  37 indicate tha t  the e f fec ts  of s tore  ver t ica l  height on 
the measured store and wing-fuselage forces and moments a re  re la t ive ly  
s m a l l  or  negligible except fo r  s tore  drag and s tore  l i f t  which showed 
s ignif icant  changes fo r  some s tore  positions. Similar resu l t s  due t o  
the effects  of s tore  ver t ica l  displacement were also shown i n  references 2 
and 3 f o r  the swept-wing configuration. 

Effect of wing-fuselage angle of a t tack.-  The e f fec ts  of the wing- 

It should be noted that the s tore  angle of a t tack 
The 

fuselage angle of attack on the s tore  forces and moments are  presented 
i n  figures 38 t o  44. 
remained a t  0' when the wing-fuselage angle of attack w a s  changed. 
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values of the s tore  data, therefore, represent only the interference 
values; and thus i n  applying these data fo r  angles of attack other than 
zero, the e f fec ts  of s tore  angle of attack must a lso be considered. 

Figure 38 shows that increasing the wing angle of attack t o  4 O  

increases the s tore  interference drag considerably f o r  s tore  posit ion 
along the wing trailing edge. However, fo r  inboard s tore  positions on 
the forward portion of the wing plan form, increasing the angle of 
attack decreases the s tore  drag somewhat. 

The e f fec ts  of angle of attack of the wing-fuselage combination on 
s tore  l i f t  are shown i n  figure 39. 
( f ig .  39) decreases the s tore  l i f t  considerably fo r  inboard spanwise 
s tore  positions on the wing plan form. This resu l t ,  as pointed out i n  
reference 2, was probably due t o  increased intensi ty  i n  the posit ive 
pressure region ahead of the w i n g  leading edge which i s  t o  be expected 
with increased angle of attack. 

Increasing the angle of a t tack t o  4' 

i n  figure 40 f o r  angles of attack up t o  
U 

LS 
The contour map of C 

bo ( l inear  variation between 0' and 4') shows that wing l i f t  changes 
s tore  interference l i f t  i n  a negative direction f o r  s tore  positions over 
a range s l igh t ly  larger  than the wing plan form except f o r  s tore  posi- 
t ions i n  the vicini ty  of wing t i p .  
some increase i n  s tore  l i f t  w a s  noted which probably resul ted from the 
e f fec ts  of t i p  vortices.  

For the region around the wing t i p ,  

The data of figures 41 and 42 indicate large increases i n  s tore  s ide 
The contour p lo t  Cysu ( l i nea r  force with increases i n  angle of attack. 

variation between 0' and 4') shows that the maximum increase i n  s ide force 
occurs i n  the vicini ty  of the w i n g  t i p .  This i s  as expected since the 
intensi ty  of the spanwise flow increases toward the t i p .  The small change 
i n  ver t ica l  height which occurs when the wing-fuselage angle of a t tack is 
changed is  small and has l i t t l e  e f f ec t  upon the side-force loads now being 
considered. 

Although the contour p lo t  C (f ig.  42) w a s  prepared from data 
ySU 

l imited t o  4' angle of attack, these data indicate that ,  f o r  higher 
angles of a t tack,  the side-force loads on the s tore  or pylon would con- 
tinue t o  increase and become c r i t i c a l .  This has been shown t o  be t rue f o r  
a similar delta-wing configuration tested i n  the 9- by 12-inch blowdown 
tunnel f o r  angles of attack up t o  loo (ref.  5 ) .  
of the two investigations w a s  made i n  figure 9 of reference 6 and showed 
good agreement between the resu l t s .  Also, as was pointed out i n  refer- 
ence 6, the comparison indicated that the side-force data from the present 
t e s t s  might be cautiously extrapolated t o  higher angles of a t tack using 
the 9- by 12-inch blowdam tunnel data as a guide. 

A camparison of the data 



Figures 43 and 44 show the e f fec t  of angle of a t tack on s tore  
pitching moment and yawing moment, respectively, t o  be measurable, but 
small. 
with store chordwise or spanwise positions. However, the s tore  yawing- 
moment data of reference 3 f o r  t e s t s  on a 45' swept wing a l s o  indicated 
similar resu l t s .  

Figure 44 also shows but l i t t l e  variation of s tore  yawing moment 

The data of figures 45 and 46 show the e f fec ts  of angle of attack 
on wing-fuselage drag and t o t a l  drag (wing and fuselage plus s to re ) ,  
respectively. 
attack on wing-fuselage l i f t ,  t o t a l  l i f t  (wing and fuselage plus s to re ) ,  
and pitch, respectively. 
show that the curves were displaced considerably due t o  angle-of-attack 
loading, the variations with s tore  chordwise posit ion a re  similar i n  
shape and i n  magnitudes of changes shown. Thus, i n  general, the figures 
show that the interferences of the s tore  on the wing-fuselage combination 
a re  l i t t l e  affected by wing angle of attack and appear t o  depend primarily 
upon store posit ion.  A similar r e su l t  w a s  found f o r  the swept wing of 
reference 3. 

Figures 47 t o  49 i l l u s t r a t e  the e f fec ts  of angle of 

Although the data f o r  each of these figures 

Relative Contribution of the Store and the Wing and Fuselage 

Toward Total Drag and L i f t  

Figures 50 and 51 show the drag and l i f t  for  the s tore  (based on 
wing area) ,  the wing-fuselage combination, and the sum of these two which 
i s  the t o t a l  f o r  the complete model plot ted against s tore  chordwise posi- 
t ion.  The data of figure 50 show tha t  the maximum drag f o r  both the 
store and the wing and fuselage occurs a t  about the same s tore  chordwise 
positions (between x = 20 t o  24), thus causing high peaks i n  the t o t a l  
drag curves. 
swept-wing configuration; however, the drag-curve peaks were somewhat 
more pronounced and s l igh t ly  fa r ther  rearward (about s ta t ions x = 24 
t o  x = 28).  
is  very small and consequently it contributes only a small par t  toward the 
t o t a l  l i f t .  

Similar resu l t s  were a l so  noted i n  reference 2 f o r  the 

Figure 51 shows tha t  the s tore  l i f t  (based on wing area)  

Comparison of Store and Wing-Fuselage Forces 

for  the Swept- and Delta-Wing Combinations 

Figure 52 shows a comparison of the contour plots  of the s tore  drag 
and t o t a l  drag (a = Oo,  
and a 45' swept-wing combination ( r e f s .  2 and 3 ) .  
plan forms differed markedly i n  sweep, aspect ra t io ,  and thickness r a t io ,  
the interference values of store drag produced on the s tore  by both model 

z = 2.09) fo r  the 60° delta-wing combination 
Although the wing 



combinations were of comparable magnitudes and, i n  general, showed simi- 
lar  trends. 
of the wing occurred for  both models inboard on the wing plan form. 
ever, the d a t a  of reference 2 f o r  the swept wing indicated that the 
fuselage has a s ignif icant  e f f ec t  on the s tore  interference drag fo r  
some inboard s tore  positions;and thus should not be neglected i n  making 
comparisons. 
drag leve l  fo r  the 45’ swept wing, and the magnitudes of the increniental 
drag variation due to  s tore  interferences are  approximately twice the 
incremental values shown by the delta wing i n  the v ic in i ty  of the w i n g .  
plan forms. Also, the variation of to ta l  drag with s tore  spanwise 
posit ion appears t o  be somewhat larger f o r  the 45’ swept wing. 

The maximum s tore  drag for s tore  positions i n  the v ic in i ty  
How- 

The contour plots  fo r  to ta l  drag show a considerably higher 

Comparisons of the contour plots  of the s tore  l i f t  f o r  the de l ta  and 
The data show tha t  the magnitudes the swept wing are shown i n  figure 53. 

of s tore  l i f t  fo r  both wing-f uselage combinations were of compara-ble 
magnitudes; however, the values were s l igh t ly  larger f o r  some s tore  
positions i n  the presence of the sweptwing. Contour plots  of the t o t a l  
l i f t  ( w i n g  and fuselage plus s tore)  show that maximum t o t a l  l i f t  in te r -  
ference occurred on both wings f o r  store positions i n  the v ic in i ty  of the 
wing plan form along the wing t r a i l i ng  edge near the inboard s ta t ions .  
The magnitudes of the maximum to t a l  l i f t  interference i n  this region are 
s l igh t ly  larger f o r  the swept wing (about 0.01) as a resu l t .o f  the 
s l i gh t ly  higher s tore  l i f t  values. 

A comparison of the contour p lo t  of the s tore  side-force slope coef- 
f i c i en t  C 

These data indicate that the highest side-force loads a re  obtained a t  the 
t i p  fo r  both w i n g s  and the coefficients show values of comparable magni- 

fo r  the two wings can be found i n  reference 6 (z = 2.09).  
ySU 

- 
tudes. Further, the comparison showed the chordwise variation .of 

t o  be essent ia l ly  zero i n  the case of the delta wing, whereas the swept 
w i n g  showed considerable chordwise variation of Cys . 

U 

CONCLUSIONS 

A supersonic wind-tunnel investigation has been conducted i n  the 
Langley 4- by 4-foot supersonic pressure tunnel a t  a Mach number of 1.6 
i n  which separate forces were measured on a store and on a 60° delta- 
wing-fuselage combination f o r  a wide range of s tore  positions. The 
resu l t s  a re  compared with similar t e s t s  of the s tore  i n  the presence of 
a 4 5 O  swept-wing-fuselage combination (refs. 2 and 3 )  and indicate the 
following conclusions: 



1. Large changes i n  s tore  and wing-fuselage forces and moments may 
occur for  both wing-fuselage combinations with small chawes i n  s to re  
spanwise or chordwise posi t ions.  

2. The s tore  positions fo r  high drag with both complete configura- 
t ions (wing and fuselage plus s to re )  were i n  the v ic in i ty  of the wing 
inboard spanwise s ta t ions .  

3. The interference drag on the s to re  produced by the presence of 
the wing and fuselage i s  explained i n  a qua l i ta t ive  way by using the 
"buoyancy" method which considers the pressure f i e l d  of the wing and 
fuselage and the resu l tan t  buoyant forces on the s tore .  

4. Increasing the wing-fuselage angle of a t tack  caused large changes 

The i n t e r -  
i n  store l i f t  and s ide  force with both wing-fuselage combinations, but 
resulted i n  only s m a l l  changes on the measured s tore  moments. 
ferences of the s tore  on the wing-fuselage combinations were l i t t l e  
affected by wing-fuselage angle of a t tack  and appear t o  depend primarily 
upon store position. 

5 .  The interference values produced on the s tore  by the delta-wing- 
and swept-wing-fuselage combinations were of comparable magnitudes a t  
00 angle of attack fo r  lift and f o r  drag. 
forces with s tore  chordwise posit ion w a s  greater f o r  the swept-wing com- 
bination. 

However, the variation of these 

Langley Aeronautical Laboratory, 
National Advisory Committee f o r  Aeronautics, 

Langley Field,  V a . ,  September 12, 1955. 
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TABLE I.- PERTINENT MODEL DlMENSIONS 

Store : 
Maximum diameter, in .  . . . . . . . . . . . . . . . . . . .  1.5 
Maximum frontal  area, sq f t  . . . . . . . . . . . . . . . .  0.0123 

0.96 Base diameter, i n .  . . . . . . . . . . . . . . . . . . . .  
Base area, sq f t  . . . . . . . . . . . . . . . . . . . . . .  0.005 . . . . . . . . . . . . . . . . . . . .  12 
Nose fineness r a t i o  . . . . . . . . . . . . . . . . . . . .  3 

i .82 Afterbody fineness r a t i o  . . . . . . . . . . . . . . . . . .  
8 Overall fineness r a t i o  . . . . . . . . . . . . . . . . . . .  

44.2 R a t i o  of wing area t o  s tore  maximum f ronta l  area 

Overall length, i n .  

. . . . . .  
Fuselage : 

Maximum diameter, i n .  . . . . . . . . . . . . . . . . . . .  
Maximum f ronta l  area (semicircle), sq f t  

Base area (semicircle), sq f t  
Overall length, i n .  . . . . . . . . . . . . . . . . . . . .  
Nose fineness r a t i o  . . . . . . . . . . . . . . . . . . . .  
Afterbody fineness r a t i o  . . . . . . . . . . . . . . . . . .  
Overall fineness r a t i o  . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . .  
Base diameter, in .  . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . .  

2 -75 
0.0206 
1 * 372 

0.0051 
35 -75 
4.75 

3 
13 

60' Del ta  Wing: 
Semispan, in .  . . . . . . . . . . . . . . . . . . . . . . .  9.5 
Mean aerodynamic chord, i n .  10.97 
Area (semispan), sq f t  . . . . . . . . . . . . . . . . . . .  0.543 . . . . . . . . . . . . . . . . . . . . . . . .  2.31 
Center-line chord, i n .  . . . . . . . . . . . . . . . . . .  16.454 
Section . . . . . . . . . . . . . . . . . . . . . . .  NACA 6514-004 

. . . . . . . . . . . . . . . .  
Aspect r a t io  
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Figure 2.- Aerodynamic characteristics of the isolated configuration 
components. - 
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Figure 9.- Drag of wing-fuselage combination i n  presence of store.  
M = 1.61. 
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Figure  46.- Effect of angle of a t tack  of wing-fuselage combination on 
t o t a l  drag. z = 2.09 inches. 
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Figure 50.- Relative contribution of store drag and wing-fuselage drag 
to total drag. z = 1.15 inches; a = 00. 
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Figure 51.- Relative contribution of store lift and wing-fuselage lift 
to total lift. z = 1.15 inches; a = Oo. 
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